Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Ann Allergy Asthma Immunol ; 132(1): 82-90.e1, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37758056

RESUMO

BACKGROUND: Pru p 7 was the first gibberellin-regulated protein (GRP) to be identified as a food allergen as the basis of a pollen food allergy syndrome. OBJECTIVE: To clinically and biologically characterize a group of patients with suspected allergy to Pru p 7 to optimize the diagnostic workup of GRP sensitization. METHODS: Allergy to Pru p 7 was suspected in the presence of a systemic allergic reaction to plant food, positive skin prick test results for cypress pollen and lipid-transfer protein-enriched peach extract, and absence of Pru p 3-specific immunoglobulin E. Controls were patients with food allergies, patients sensitized to Pru p 3, and patients with cypress allergy without food allergy. Diagnostic workup included skin tests, basophil activation test, Western blot, and single and multiplex assays. RESULTS: In total, 23 patients and 14 controls were enrolled. The most implicated food was peach (91.3%). Approximately 70% of patients reacted to multiple foods. Mueller 4 reactions were 8.7%. In 26.1% of cases, a cofactor triggered the reaction. The basophil activation test results were positive for rPru p 7 in 87% of the patients. Specific immunoglobulin E to Pru p 7 was detected in 95.7% by singleplex and in 73.9% by multiplex assays in patients with suspected allergies; 73.9% of them also reacted to cypress pollen GRP (Cup s 7) in Western blot analysis. CONCLUSION: Patients with Pru p 7-Cup s 7 allergy in our cohort confirm a mild-to-severe clinical syndrome characterized by pollen and food allergy. The diagnosis may benefit from the proposed selection criteria that can be used as preliminary steps to further characterize the cross-reactive GRP sensitization.


Assuntos
Hipersensibilidade Alimentar , Prunus persica , Humanos , Proteínas de Plantas , Antígenos de Plantas , Giberelinas , Estudos de Coortes , Alérgenos , Hipersensibilidade Alimentar/diagnóstico , Imunoglobulina E , Prunus persica/efeitos adversos , Itália
2.
Brain ; 147(3): 900-910, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748026

RESUMO

The most common genetic risk factors for Parkinson's disease are GBA1 mutations, encoding the lysosomal enzyme glucocerebrosidase. Patients with GBA1 mutations (GBA-PD) exhibit earlier age of onset and faster disease progression with more severe cognitive impairments, postural instability and gait problems. These GBA-PD features suggest more severe cholinergic system pathologies. PET imaging with the vesicular acetylcholine transporter ligand 18F-F-fluoroethoxybenzovesamicol (18F-FEOBV PET) provides the opportunity to investigate cholinergic changes and their relationship to clinical features in GBA-PD. The study investigated 123 newly diagnosed, treatment-naïve Parkinson's disease subjects-with confirmed presynaptic dopaminergic deficits on PET imaging. Whole-gene GBA1 sequencing of saliva samples was performed to evaluate GBA1 variants. Patients underwent extensive neuropsychological assessment of all cognitive domains, motor evaluation with the Unified Parkinson's Disease Rating Scale, brain MRI, dopaminergic PET to measure striatal-to-occipital ratios of the putamen and 18F-FEOBV PET. We investigated differences in regional cholinergic innervation between GBA-PD carriers and non-GBA1 mutation carriers (non-GBA-PD), using voxel-wise and volume of interest-based approaches. The degree of overlap between t-maps from two-sample t-test models was quantified using the Dice similarity coefficient. Seventeen (13.8%) subjects had a GBA1 mutation. No significant differences were found in clinical features and dopaminergic ratios between GBA-PD and non-GBA-PD at diagnosis. Lower 18F-FEOBV binding was found in both the GBA-PD and non-GBA-PD groups compared to controls. Dice (P < 0.05, cluster size 100) showed good overlap (0.7326) between the GBA-PD and non-GBA-PD maps. GBA-PD patients showed more widespread reduction in 18F-FEOBV binding than non-GBA-PD when compared to controls in occipital, parietal, temporal and frontal cortices (P < 0.05, FDR-corrected). In volume of interest analyses (Bonferroni corrected), the left parahippocampal gyrus was more affected in GBA-PD. De novo GBA-PD show a distinct topography of regional cholinergic terminal ligand binding. Although the Parkinson's disease groups were not distinguishable clinically, in comparison to healthy controls, GBA-PD showed more extensive cholinergic denervation compared to non-GBA-PD. A larger group is needed to validate these findings. Our results suggest that de novo GBA-PD and non-GBA-PD show differential patterns of cholinergic system changes before clinical phenotypic differences between carriers versus non-carrier groups are observable.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Glucosilceramidase/genética , Ligantes , Marcha , Corpo Estriado , Dopamina
3.
Front Neurosci ; 17: 1293847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099203

RESUMO

Positron Emission Tomography (PET) brain imaging is increasingly utilized in clinical and research settings due to its unique ability to study biological processes and subtle changes in living subjects. However, PET imaging is not without its limitations. Currently, bias introduced by partial volume effect (PVE) and poor signal-to-noise ratios of some radiotracers can hamper accurate quantification. Technological advancements like ultra-high-resolution scanners and improvements in radiochemistry are on the horizon to address these challenges. This will enable the study of smaller brain regions and may require more sophisticated methods (e.g., data-driven approaches like unsupervised clustering) for reference region selection and to improve quantification accuracy. This review delves into some of these critical aspects of PET molecular imaging and offers suggested strategies for improvement. This will be illustrated by showing examples for dopaminergic and cholinergic nerve terminal ligands.

4.
Neuroimage Clin ; 39: 103475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37494757

RESUMO

BACKGROUND: Brain imaging with [18F]FDG-PET can support the diagnostic work-up of patients with α-synucleinopathies. Validated data analysis approaches are necessary to evaluate disease-specific brain metabolism patterns in neurodegenerative disorders. This study compared the univariate Statistical Parametric Mapping (SPM) single-subject procedure and the multivariate Scaled Subprofile Model/Principal Component Analysis (SSM/PCA) in a cohort of patients with α-synucleinopathies. METHODS: We included [18F]FDG-PET scans of 122 subjects within the α-synucleinopathy spectrum: Parkinson's Disease (PD) normal cognition on long-term follow-up (PD - low risk to dementia (LDR); n = 28), PD who developed dementia on clinical follow-up (PD - high risk of dementia (HDR); n = 16), Dementia with Lewy Bodies (DLB; n = 67), and Multiple System Atrophy (MSA; n = 11). We also included [18F]FDG-PET scans of isolated REM sleep behaviour disorder (iRBD; n = 51) subjects with a high risk of developing a manifest α-synucleinopathy. Each [18F]FDG-PET scan was compared with 112 healthy controls using SPM procedures. In the SSM/PCA approach, we computed the individual scores of previously identified patterns for PD, DLB, and MSA: PD-related patterns (PDRP), DLBRP, and MSARP. We used ROC curves to compare the diagnostic performances of SPM t-maps (visual rating) and SSM/PCA individual pattern scores in identifying each clinical condition across the spectrum. Specifically, we used the clinical diagnoses ("gold standard") as our reference in ROC curves to evaluate the accuracy of the two methods. Experts in movement disorders and dementia made all the diagnoses according to the current clinical criteria of each disease (PD, DLB and MSA). RESULTS: The visual rating of SPM t-maps showed higher performance (AUC: 0.995, specificity: 0.989, sensitivity 1.000) than PDRP z-scores (AUC: 0.818, specificity: 0.734, sensitivity 1.000) in differentiating PD-LDR from other α-synucleinopathies (PD-HDR, DLB and MSA). This result was mainly driven by the ability of SPM t-maps to reveal the limited or absent brain hypometabolism characteristics of PD-LDR. Both SPM t-maps visual rating and SSM/PCA z-scores showed high performance in identifying DLB (DLBRP = AUC: 0.909, specificity: 0.873, sensitivity 0.866; SPM t-maps = AUC: 0.892, specificity: 0.872, sensitivity 0.910) and MSA (MSARP: AUC: 0.921, specificity: 0.811, sensitivity 1.000; SPM t-maps: AUC: 1.000, specificity: 1.000, sensitivity 1.000) from other α-synucleinopathies. PD-HDR and DLB were comparable for the brain hypo and hypermetabolism patterns, thus not allowing differentiation by SPM t-maps or SSM/PCA. Of note, we found a gradual increase of PDRP and DLBRP expression in the continuum from iRBD to PD-HDR and DLB, where the DLB patients had the highest scores. SSM/PCA could differentiate iRBD from DLB, reflecting specifically the differences in disease staging and severity (AUC: 0.938, specificity: 0.821, sensitivity 0.941). CONCLUSIONS: SPM-single subject maps and SSM/PCA are both valid methods in supporting diagnosis within the α-synucleinopathy spectrum, with different strengths and pitfalls. The former reveals dysfunctional brain topographies at the individual level with high accuracy for all the specific subtype patterns, and particularly also the normal maps; the latter provides a reliable quantification, independent from the rater experience, particularly in tracking the disease severity and staging. Thus, our findings suggest that differences in data analysis approaches exist and should be considered in clinical settings. However, combining both methods might offer the best diagnostic performance.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Sinucleinopatias , Humanos , Sinucleinopatias/diagnóstico por imagem , Sinucleinopatias/metabolismo , Fluordesoxiglucose F18/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Doença de Parkinson/metabolismo , Doença de Alzheimer/metabolismo , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Análise Multivariada , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/metabolismo
5.
Eur J Nucl Med Mol Imaging ; 50(11): 3290-3301, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37310428

RESUMO

PURPOSE: Isolated REM sleep behaviour disorder (iRBD) patients are at high risk of developing clinical syndromes of the α-synuclein spectrum. Progression markers are needed to determine the neurodegenerative changes and to predict their conversion. Brain imaging with 18F-FDG PET in iRBD is promising, but longitudinal studies are scarce. We investigated the regional brain changes in iRBD over time, related to phenoconversion. METHODS: Twenty iRBD patients underwent two consecutive 18F-FDG PET brain scans and clinical assessments (3.7 ± 0.6 years apart). Seventeen patients also underwent 123I-MIBG and 123I-FP-CIT SPECT scans at baseline. Four subjects phenoconverted to Parkinson's disease (PD) during follow-up. 18F-FDG PET scans were compared to controls with a voxel-wise single-subject procedure. The relationship between regional brain changes in metabolism and PD-related pattern scores (PDRP) was investigated. RESULTS: Individual hypometabolism t-maps revealed three scenarios: (1) normal 18F-FDG PET scans at baseline and follow-up (N = 10); (2) normal scans at baseline but occipital or occipito-parietal hypometabolism at follow-up (N = 4); (3) occipital hypometabolism at baseline and follow-up (N = 6). All patients in the last group had pathological 123I-MIBG and 123I-FP-CIT SPECT. iRBD converters (N = 4) showed occipital hypometabolism at baseline (third scenario). At the group level, hypometabolism in the frontal and occipito-parietal regions and hypermetabolism in the cerebellum and limbic regions were progressive over time. PDRP z-scores increased over time (0.54 ± 0.36 per year). PDRP expression was driven by occipital hypometabolism and cerebellar hypermetabolism. CONCLUSIONS: Our results suggest that occipital hypometabolism at baseline in iRBD implies a short-term conversion to PD. This might help in stratification strategies for disease-modifying trials.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Humanos , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Transtorno do Comportamento do Sono REM/metabolismo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Fluordesoxiglucose F18 , 3-Iodobenzilguanidina , Tomografia por Emissão de Pósitrons/métodos , Fatores de Risco
6.
Curr Radiopharm ; 16(4): 253-268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37190802

RESUMO

BACKGROUND: Despite substantial research, the mechanisms behind stress Tako-tsubo cardiomyopathy (TTC) remain rather elusive. OBJECTIVE: The purpose of this paper was to provide a detailed review of the mainstream factors underlying the pathophysiology of TTC, highlighting the novel contributions of molecular pathology and in-vivo molecular imaging. METHODS: A careful literature review selected all papers discussing TTC, specifically those providing novel insights from myocardial pathology and cardiac molecular imaging. RESULTS: Results concerning myocardial pathology, defect extension, sites and relationships between functional parameters underline the existence of a causal relationship between a determinant (e.g., the release of catecholamines induced by stress) and an outcome for TTC, which is not limited to a reversible contractile cardiomyopathy, but it includes reversible changes in myocardial perfusion and a long-lasting residual deficit in sympathetic function. Besides, they reinforce the hypothesis that sympathetic nerves may exert a complex control on cardiac contractile function, which is likely to be direct or indirect through metabolism and microvascular perfusion changes during anaerobic and aerobic conditions. CONCLUSION: TTC is characterized by acute transient left ventricular systolic dysfunction, which can be challenging to distinguish from myocardial infarction at presentation. Catecholamineinduced myocardial injury is the most established theory, but other factors, including myocardial metabolism and perfusion, should be considered of utmost importance. Each effort to clarify the numerous pathways and emerging abnormalities may provide novel approaches to treat the acute episode, avoid recurrences, and prevent major adverse cardiovascular events.


Assuntos
Infarto do Miocárdio , Cardiomiopatia de Takotsubo , Humanos , Imagem Molecular , Miocárdio , Compostos Radiofarmacêuticos , Cardiomiopatia de Takotsubo/diagnóstico por imagem
7.
Brain Connect ; 13(7): 370-382, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37097207

RESUMO

Objectives: Attention-deficit hyperactivity disorder (ADHD) in adulthood shows high co-occurrence rates with cocaine use disorder (CoUD). The self-medication hypothesis (SMH) provides a theoretical explanation for this comorbidity. This study investigates the neurobiological mechanisms that could support SMH in adult patients with attention-deficit hyperactivity disorder with cocaine use disorder (ADHD-CoUD). Materials and Methods: We included 19 ADHD-CoUD patients (84.2% male; age: 32.11 years [7.18]) and 16 CoUD patients (68.7% male; age: 36.63 years [8.12]). All subjects underwent a fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG PET) brain scan. We tested brain metabolism differences between ADHD-CoUD and CoUD patients using voxel-based and regions of interest (ROIs)-based analyses. The correlation between dependence/abstinence duration and regional brain metabolism was also assessed in the two groups. Lastly, we investigated the integrity of brain metabolic connectivity of mesocorticolimbic and nigrostriatal dopaminergic systems, and large-scale brain networks involved in ADHD and addictions. Results: The voxel-wise and ROIs-based approaches showed that ADHD-CoUD patients had a lower metabolism in the thalamus and increased metabolism in the amygdala and parahippocampus, bilaterally, than CoUD subjects and healthy controls (HCs). Metabolism in the thalamus negatively correlated with years of dependence in ADHD-CoUD patients. Moreover, connectivity analyses revealed that ADHD-CoUD patients had a more preserved metabolic connectivity than CoUD patients in the dopaminergic networks and large-scale networks involved in self-regulation mechanisms of attention and behaviors (i.e., anterior default mode network [ADMN], executive network [ECN], and anterior salience network [aSAN]). Conclusions: We demonstrated distinct neuropathological substrates underlying substance-use behaviors in ADHD-CoUD and CoUD patients. Furthermore, we provided neurobiological evidence in support of SMH, demonstrating that ADHD-CoUD patients might experience short-term advantages of cocaine assumption (i.e., compensation of dopaminergic deficiency and related cognitive-behavioral deficits).


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Cocaína , Humanos , Masculino , Adulto , Feminino , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Fluordesoxiglucose F18/uso terapêutico , Encéfalo , Imageamento por Ressonância Magnética/métodos , Cocaína/uso terapêutico , Dopamina/metabolismo , Dopamina/uso terapêutico , Tomografia por Emissão de Pósitrons
8.
Brain Sci ; 13(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36831719

RESUMO

Isolated rapid-eye-movement sleep behaviour disorder (RBD) is considered the prodromal stage of α-synucleinopathies (e.g., Parkinson's disease and dementia with Lewy bodies); however, iRBD patients show a wide variety in the progression timing (5-15 years). The model of cognitive reserve (CR) might contribute to explaining this phenomenon. Our exploratory study aimed to evaluate, for the first time, the impact of CR level on cognitive performance in polysomnography-confirmed iRBD patients. Fifty-five iRBD patients (mean age ± SD: 66.38 ± 7.51; M/F 44/11) underwent clinical and neuropsychological evaluations at the time of diagnosis. The CR Index questionnaire was part of the clinical assessment. We found that iRBD patients with high levels of CR showed: (i) the lowest percentage of mild cognitive impairment (10%), and (ii) the best performance in visuo-constructive and verbal memory functions (i.e., the recall of the Rey-Osterrieth complex figure test). Our results suggest that CR might help iRBD patients better cope with the cognitive decline related to the neurodegenerative process, providing the first preliminary findings supporting CR as a possible protective factor in this condition. This might pave the way for future longitudinal studies to evaluate the role of CR as a modulating factor in the timing of iRBD conversion and cognitive deterioration development.

9.
Front Med (Lausanne) ; 9: 1073720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530915

RESUMO

Objective: This study investigates the effects of manual and semi-automatic methods for assessing MIBG semi-quantitative indices in a clinical setting. Materials and methods: We included 123I-MIBG scans obtained in 35 patients with idiopathic Parkinson's Disease. Early and late heart-to-mediastinum (H/M) ratios were calculated from 123I-MIBG images using regions of interest (ROIs) placed over the heart and the mediastinum. The ROIs were derived using two approaches: (i) manually drawn and (ii) semi-automatic fixed-size ROIs using anatomical landmarks. Expert, moderate-expert, and not expert raters applied the ROIs procedures and interpreted the 123I-MIBG images. We evaluated the inter and intra-rater agreements in assessing 123I-MIBG H/M ratios. Results: A moderate agreement in the raters' classification of pathological and non-pathological scores emerged regarding early and late H/M ratio values (κ = 0.45 and 0.69 respectively), applying the manual method, while the early and late H/M ratios obtained with the semi-automatic method reached a good agreement among observers (κ = 0.78). Cohen-Kappa values revealed that the semi-automatic method improved the agreement between expert and inexpert raters: the agreement improved from a minimum of 0.29 (fair, for early H/M) and 0.69 (substantial, in late H/M) with the manual method, to 0.90 (perfect, in early H/M) and 0.87 (perfect, in late H/M) with the semi-automatic method. Conclusion: The use of the semi-automatic method improves the agreement among raters in classifying' H/M ratios as pathological or non-pathological, namely for inexpert readers. These results have important implications for semi-quantitative assessment of 123I-MIBG images in clinical routine.

10.
Front Neurosci ; 16: 930735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003959

RESUMO

Previous evidence suggests that the derangement of large-scale brain networks reflects structural, molecular, and functional mechanisms underlying neurodegenerative diseases. Although the alterations of multiple large-scale brain networks in Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB) are reported, a comprehensive study on connectivity reconfiguration starting from the preclinical phase is still lacking. We aimed to investigate shared and disease-specific changes in the large-scale networks across the Lewy Bodies (LB) disorders spectrum using a brain metabolic connectivity approach. We included 30 patients with isolated REM sleep behavior disorder (iRBD), 28 with stable PD, 30 with DLB, and 30 healthy controls for comparison. We applied seed-based interregional correlation analyses (IRCA) to evaluate the metabolic connectivity in the large-scale resting-state networks, as assessed by [18F]FDG-PET, in each clinical group compared to controls. We assessed metabolic connectivity changes by applying the IRCA and specific connectivity metrics, such as the weighted and unweighted Dice similarity coefficients (DC), for the topographical similarities. All the investigated large-scale brain resting-state networks showed metabolic connectivity alterations, supporting the widespread involvement of brain connectivity within the alpha-synuclein spectrum. Connectivity alterations were already evident in iRBD, severely affecting the posterior default mode, attentive and limbic networks. Strong similarities emerged in iRBD and DLB that showed comparable connectivity alterations in most large-scale networks, particularly in the posterior default mode and attentive networks. Contrarily, PD showed the main connectivity alterations limited to motor and somatosensory networks. The present findings reveal that metabolic connectivity alterations in the large-scale networks are already present in the early iRBD phase, resembling the DLB metabolic connectivity changes. This suggests and confirms iRBD as a risk condition for progression to the severe LB disease phenotype. Of note, the neurobiology of stable PD supports its more benign phenotype.

11.
Eur J Nucl Med Mol Imaging ; 50(1): 90-102, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35984451

RESUMO

PURPOSE: We evaluated brain metabolic dysfunctions and associations with neurological and biological parameters in acute, subacute and chronic COVID-19 phases to provide deeper insights into the pathophysiology of the disease. METHODS: Twenty-six patients with neurological symptoms (neuro-COVID-19) and [18F]FDG-PET were included. Seven patients were acute (< 1 month (m) after onset), 12 subacute (4 ≥ 1-m, 4 ≥ 2-m and 4 ≥ 3-m) and 7 with neuro-post-COVID-19 (3 ≥ 5-m and 4 ≥ 7-9-m). One patient was evaluated longitudinally (acute and 5-m). Brain hypo- and hypermetabolism were analysed at single-subject and group levels. Correlations between severity/extent of brain hypo- and hypermetabolism and biological (oxygen saturation and C-reactive protein) and clinical variables (global cognition and Body Mass Index) were assessed. RESULTS: The "fronto-insular cortex" emerged as the hypometabolic hallmark of neuro-COVID-19. Acute patients showed the most severe hypometabolism affecting several cortical regions. Three-m and 5-m patients showed a progressive reduction of hypometabolism, with limited frontal clusters. After 7-9 months, no brain hypometabolism was detected. The patient evaluated longitudinally showed a diffuse brain hypometabolism in the acute phase, almost recovered after 5 months. Brain hypometabolism correlated with cognitive dysfunction, low blood saturation and high inflammatory status. Hypermetabolism in the brainstem, cerebellum, hippocampus and amygdala persisted over time and correlated with inflammation status. CONCLUSION: Synergistic effects of systemic virus-mediated inflammation and transient hypoxia yield a dysfunction of the fronto-insular cortex, a signature of CNS involvement in neuro-COVID-19. This brain dysfunction is likely to be transient and almost reversible. The long-lasting brain hypermetabolism seems to reflect persistent inflammation processes.


Assuntos
COVID-19 , Tomografia por Emissão de Pósitrons , Humanos , COVID-19/diagnóstico por imagem , Fluordesoxiglucose F18/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Inflamação/metabolismo
12.
Cortex ; 154: 1-14, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35717768

RESUMO

Functional network-level alterations in the semantic variant of Primary Progressive Aphasia (sv-PPA) are relevant to understanding the clinical features and the neural spreading of the pathology. We assessed the effect of neurodegeneration on brain systems reorganization in early sv-PPA, using advanced brain metabolic connectivity approaches. Forty-four subjects with sv-PPA and forty-four age-matched healthy controls (HC) were included. We applied two multivariate approaches to [18F]FDG-PET data - i.e., sparse inverse covariance estimation and seed-based interregional correlation analysis - to assess the integrity of (i) the whole-brain metabolic connectivity and (ii) the connectivity of brain regions relevant for cognitive and behavioral functions. Whole-brain analysis revealed a global-scale connectivity reconfiguration in sv-PPA, with widespread changes in metabolic connections of frontal, temporal, and parietal regions. In comparison to HC, the seed-based analysis revealed a) functional isolation of the left anterior temporal lobe (ATL), b) decreases in temporo-occipital connections and contralateral homologous regions, c) connectivity increases to the dorsal parietal cortex from the spared posterior temporal cortex, d) a disruption of the large-scale limbic brain networks. In sv-PPA, the severe functional derangement of the left ATL may lead to an extensive connectivity reconfiguration, encompassing several brain regions, including those not yet affected by neurodegeneration. These findings support the hypothesis that in sv-PPA the focal vulnerability of the core region (i.e., ATL) can potentially drive the widespread cerebral connectivity changes, already present in the early phase.


Assuntos
Afasia Primária Progressiva , Semântica , Encéfalo , Humanos , Imageamento por Ressonância Magnética , Lobo Temporal
13.
Neurobiol Dis ; 167: 105668, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219854

RESUMO

Parkinson's disease (PD) is characterized by heterogeneity in clinical syndromes, prognosis, and pathophysiology mechanisms. Gender differences in neural anatomy and function are emerging as fundamental determinants of phenotypic variability. Different clinical subtypes, defined as mild motor predominant, intermediate, and diffuse-malignant, have been recently proposed in PD. This study investigated gender influence on clinical features, dopaminergic dysfunction, and connectivity in patients with de novo idiopathic PD stratified according to the clinical criteria for subtypes (i.e., mild motor, intermediate, and diffuse-malignant). We included 286 drug-naïve patients (Males/Females: 189/97, age [mean ± standard deviation]: 61.99 ± 9.67; disease duration: 2.08 ± 2.21) with available [123I]FP-CIT-SPECT and high-resolution T1-weighted MRI from the Parkinson's Progression Markers Initiative. We assessed gender differences for clinical and cognitive features, and dopaminergic presynaptic dysfunction in striatal or extra-striatal regions using molecular analysis of [123I]FP-CIT-bindings. We applied an advanced multivariate analytical approach - partial correlations molecular connectivity analyses - to assess potential gender differences in the vulnerability of the nigrostriatal and mesolimbic dopaminergic pathways. In the mild motor and intermediate subtypes, male patients with idiopathic PD showed poorer cognitive performances than females, who - in contrast - presented more severe anxiety symptoms. The male vulnerability emerged also in the motor system in the same subtypes with motor impairment associated with a lower dopamine binding in the putamen and more severe widespread connectivity alterations in the nigrostriatal dopaminergic pathway in males than in females. In the diffuse-malignant subtype, males showed more severe motor impairments, consistent with a lower dopamine uptake in the putamen than females. On the other hand, a severe dopaminergic depletion in several dopaminergic targets of the mesolimbic pathway, together with extensive altered connectivity in the same system, characterized females with idiopathic PD in all the subtypes. The anxiety level was associated with a lower dopaminergic binding in the amygdala only in females. This study provides evidence on gender differences in idiopathic PD across clinical subtypes, and, remarkably, since the early phase. The clinical correlations with the nigrostriatal or mesolimbic systems in males and females support different vulnerabilities and related disease expressions. Gender differences must be considered in a precision medicine approach to preventing, diagnosing, and treating idiopathic PD.


Assuntos
Doença de Parkinson , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Humanos , Masculino , Doença de Parkinson/patologia , Fatores Sexuais , Tomografia Computadorizada de Emissão de Fóton Único/métodos
14.
Allergy ; 77(8): 2292-2312, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35112371

RESUMO

BACKGROUND: Anaphylaxis, which is rare, has been reported after COVID-19 vaccination, but its management is not standardized. METHOD: Members of the European Network for Drug Allergy and the European Academy of Allergy and Clinical Immunology interested in drug allergy participated in an online questionnaire on pre-vaccination screening and management of allergic reactions to COVID-19 vaccines, and literature was analysed. RESULTS: No death due to anaphylaxis to COVID-19 vaccines has been confirmed in scientific literature. Potential allergens, polyethylene glycol (PEG), polysorbate and tromethamine are excipients. The authors propose allergy evaluation of persons with the following histories: 1-anaphylaxis to injectable drug or vaccine containing PEG or derivatives; 2-anaphylaxis to oral/topical PEG containing products; 3-recurrent anaphylaxis of unknown cause; 4-suspected or confirmed allergy to any mRNA vaccine; and 5-confirmed allergy to PEG or derivatives. We recommend a prick-to-prick skin test with the left-over solution in the suspected vaccine vial to avoid waste. Prick test panel should include PEG 4000 or 3500, PEG 2000 and polysorbate 80. The value of in vitro test is arguable. CONCLUSIONS: These recommendations will lead to a better knowledge of the management and mechanisms involved in anaphylaxis to COVID-19 vaccines and enable more people with history of allergy to be vaccinated.


Assuntos
Anafilaxia , Vacinas contra COVID-19 , COVID-19 , Hipersensibilidade a Drogas , Vacinas , Anafilaxia/diagnóstico , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/etiologia , Hipersensibilidade a Drogas/terapia , Humanos , Vacinas Sintéticas , Vacinas de mRNA
15.
Brain Imaging Behav ; 16(1): 532-537, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34490534

RESUMO

Visuo-constructive abilities are a multicomponential process that can be impaired in several neurodegenerative dementias. Among visuo-constructive tasks, the Rey-Osterrieth Complex Figure-copy (ROCF-c) is the most commonly used and it seems influenced by different skills mediated by specific brain regions. This task complexity allows exploring differential mechanisms of impairment in different neurodegenerative disorders. In this study we examined the neuroanatomical substrates of ROCF-c performance in patients with Dementia with Lewy Bodies (DLB) and patients with Alzheimer's disease (AD). We included forty-five patients with probable DLB, and thirty-four patients with probable typical-AD. To identify the ROCF-c scores neural correlates we performed a regression analysis with brain hypometabolism using the ROCF-c scores as independent variable. Then we evaluated the correlation between regional hypometabolism and ROCF-c scores in each group separately, throughout offline Pearson correlation analysis. The DLB and AD groups differed only in visuo-constructive and memory performances. DLB patients performed worse at the visuo-constructive test, while typical-AD patients performed worse at the verbal memory task. In DLB, worse performance at ROCF-c scores (more severe visuo-constructive impairment) correlated with occipital and temporo-parietal hypometabolism. In AD, worse performance at ROCF-c score was associated with brain hypometabolism in the temporo-parietal regions. The inability to correctly perform the ROCF-c derives from distinct brain dysfunctions in DLB and AD. The present results suggest alterations in visuoperceptual processes due to the severe occipital hypometabolism in DLB, and in visuospatial processes related to temporo-parietal hypometabolism in AD.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons
16.
Mov Disord ; 37(1): 106-118, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596920

RESUMO

BACKGROUND: Glucosylceramidase (GBA) mutations are considered the most common genetic risk factors for developing Parkinson's disease (PD). OBJECTIVES: We aimed to assess, at different time points, the integrity of brain striatal and extra-striatal dopamine pathways and clinical phenotype of a group of PD subjects bearing heterozygous GBA mutations (GBA-PD), compared with a group of idiopathic PD patients (iPD) stratified by age at disease onset. A longitudinal approach was adopted to evaluate the progression over time for clinical and 123 I-FP-CIT SPECT imaging features. METHODS: We considered 46 GBA-PD patients and 339 iPD patients, subdivided into two groups according to age at PD onset (n = 58 < 50 years and n = 281 > 50 years). We measured differences in the occurrence/severity/progression of motor and non-motor features, 123 I-FP-CIT standard uptake value ratios (SUVr) in striatal and extra-striatal regions, and global cognitive deterioration over time in a subset of 168 cases with available follow-up. RESULTS: At baseline, the GBA-PD cohort showed more severe motor and cognitive deficits than the early-iPD cohort. The 123 I-FP-CIT SUVr reduction in the striatal and the extra-striatal regions was more marked in the GBA-PD than the early- and late-iPD cohorts. Both GBA-PD and late-iPD patients had a significant annual deterioration in their global cognitive performance, while the early-iPD group showed global cognitive stability over time. At follow-up, the iPD cohorts became similar to the GBA-PD group in 123 I-FP-CIT SUVr reduction. CONCLUSION: These new findings support the hypothesis of a biological role of GBA mutations in accelerating the early neurodegenerative processes in PD, leading to the malignant clinical phenotype. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Glucosilceramidase , Imagem Molecular , Doença de Parkinson , Estudos de Coortes , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Mutação/genética , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos
17.
Cortex ; 145: 105-114, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34710676

RESUMO

Underlying neural mechanisms and cognitive implications of non-Rapid Eye Movement (NREM) sleep in isolated Rapid Eye Movement (REM) sleep behavior disorder (iRBD) are not yet fully elucidated. This study aims to evaluate brain metabolic connectivity of the anterior default mode network (ADMN) underlying a waveform that is an hallmark of NREM sleep, namely K-complex (KC) and their implication for neuropsychological functioning in iRBD patients. Combining polysomnographic and multivariate molecular imaging (FDG-PET) approaches may provide crucial insights regarding KCs role in the prodromal stages of synucleinopathies. We applied a seed-based interregional correlation analysis on FDG-PET data. iRBD patients with cognitive decline displayed a reduced KC density (KCd) in comparison to patients without cognitive impairments. KCd showed a significant positive correlation with global cognitive functioning, specifically with visuo-spatial and executive performances, two cognitive domains known to be relevant in predicting conversion into neurodegenerative disorders. Increased KCd was associated with a more preserved ADMN connectivity. Our study underlines the importance of NREM sleep in prodromal stages of synucleinopathies, and future investigations might clarify its role in iRBD.


Assuntos
Disfunção Cognitiva , Transtorno do Comportamento do Sono REM , Encéfalo/diagnóstico por imagem , Humanos , Tomografia por Emissão de Pósitrons , Transtorno do Comportamento do Sono REM/diagnóstico por imagem
18.
Brain Sci ; 11(4)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800680

RESUMO

Positron emission tomography (PET) allows for the in vivo assessment of early brain functional and molecular changes in neurodegenerative conditions, representing a unique tool in the diagnostic workup. The increased use of multivariate PET imaging analysis approaches has provided the chance to investigate regional molecular processes and long-distance brain circuit functional interactions in the last decade. PET metabolic and neurotransmission connectome can reveal brain region interactions. This review is an overview of concepts and methods for PET molecular and metabolic covariance assessment with evidence in neurodegenerative conditions, including Alzheimer's disease and Lewy bodies disease spectrum. We highlight the effects of environmental and biological factors on brain network organization. All of the above might contribute to innovative diagnostic tools and potential disease-modifying interventions.

19.
Brain Connect ; 11(1): 3-11, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33198485

RESUMO

Background: In Parkinson's disease (PD), neurodegeneration of dopaminergic systems leads to motor and non-motor abnormalities. Sex might influence the clinical PD phenotypes and progression. Previous molecular imaging data focused only on the nigro-striato-cortical dopamine system that appeared more preserved in women. There is still a lack of evidence on gender/sex differences in the mesolimbic dopaminergic system. We aimed at assessing PD gender differences in both the dopaminergic pathways, by using a brain metabolic connectivity approach. This is based on the evidence of a significant coupling between the neurotransmission and metabolic impairments. Methods: We included 34 idiopathic PD patients (Female/Male: 16/18) and 34 healthy controls for comparison. The molecular architecture of both the dopaminergic networks was estimated throughout partial correlation analyses using brain metabolism data obtained by fluorine-18-fluorodeoxyglucose positron emission tomography (threshold set at p < 0.01, corrected for Bonferroni multiple comparisons). Results: Male patients were characterized by a widespread altered connectivity in the nigro-striato-cortical network and a sparing of the mesolimbic pathway. On the contrary, PD females showed a severe altered connectivity in the mesolimbic network and only a partial reconfiguration of the nigro-striato-cortical network. Discussion: Our findings add remarkable knowledge on the neurobiology of gender differences in PD, with the identification of specific neural vulnerabilities. The gender differences here revealed might be due to the combination of both biological and sociodemographic life factors. Gender differences in PD should be considered also for treatments and the targeting of modifiable risk factors.


Assuntos
Dopamina , Doença de Parkinson , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Redes Neurais de Computação , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...